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A possible mechanism of electronic phase separation in the systems with orbital ordering is analyzed. We
suggest a simple model taking into account an interplay between the delocalization of charge carriers intro-
duced by doping and the cooperative ordering of orbitals favoring the electron localization at lattice distortions.
The proposed mechanism is quite similar to the double exchange usually invoked for interpretation of phase
separation in doped magnetic oxides like manganites, but can be efficient even in the absence of any magnetic
ordering. It is demonstrated that the delocalized charge carriers favor the formation of nanoscale inhomoge-
neities with the orbital structure different from that in the undoped material. The directional character of
orbitals leads to inhomogeneities of different shapes and sizes.
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I. INTRODUCTION

The existence of superstructures is a characteristic feature
of magnetic oxides, in particular, those containing ions with
orbital degeneracy, i.e., Jahn-Teller �JT� ions. In the crystal
lattice, the JT ions usually give rise to the orbital ordering
�OO�.1,2 The OO is typical of insulating compounds. The
electron or hole doping can destroy OO since the itinerant
charge carriers favor the formation of a metallic state without
OO. However, at low doping level, we have a competition
between the charge localization and metallicity. It is well
known that such a competition can lead to the so-called elec-
tronic phase separation �PS� with nanoscale
inhomogeneities.3–5 This phenomenon is often observed,
e.g., in doped manganites �antiferromagnetic insulator versus
ferromagnetic metal�, and is usually related to some specific
type of magnetic ordering. In the usual treatment of PS, the
OO is not taken into account �see, however, the discussion
concerning isolated orbital and magnetic polarons6–9�. Here
we study the effect of OO on PS employing minimal models,
including itinerant charge carriers in the OO background,
and show that at small doping the PS may appear in systems
with orbital degeneracy even without taking into account the
magnetic structure. We consider this effect using two ver-
sions of the models. First, in Sec. II we study a symmetrical
model analogous to the Kondo-lattice model in the double
exchange limit, where the orbital variables play a role of
local spins. Namely, it is supposed that localized electrons
create lattice distortions, leading to the formation of OO. The
conduction electrons or holes introduced by doping move in
the OO background. In the second version �Sec. III�, we take
into account the specific symmetry of eg type for doped elec-
trons. For both versions, we demonstrate the possible insta-
bility of a homogeneous ground state against the formation
of inhomogeneities. As a result, additional charge carriers
introduced by doping favor the formation of nanoscale inho-
mogeneities with the orbital structure different from that in
the undoped material. In Sec. IV, we determine the shapes
and sizes of such inhomogeneities and demonstrate that, de-
pending on the ratio of the electron hopping integral t and the

interorbital coupling energy J, the shape can vary drastically.
For the two-dimensional �2D� case, in particular, there exists
a critical value of t /J, corresponding to the abrupt transition
from nearly circular to needlelike inhomogeneities. This is a
specific feature of orbital case: the directional character of
orbitals brings about the unusual and very rich characteristics
of inhomogeneous states.

II. SYMMETRICAL MODEL

Let us consider the system with JT ions having double-
degenerate state. This degeneracy can be lifted by local lat-
tice distortions, giving rise to two different states of each ion,
a or b �e.g., a �b� state corresponds to elongation �compres-
sion� of anion octahedra�. The states a and b of the ion n
determine the corresponding orbital states of a charge carrier
at this ion. In general case, each ion can be characterized by
a linear combination of basis a and b states described by an
angle �,

��� = cos
�

2
�a� + sin

�

2
�b� . �1�

The local distortions can interact with each other leading to
some regular structure. In the simplest symmetrical case, the
interaction Hamiltonian can be written in a Heisenberg-type
form

HOO = J �
�nm�

�n�m, �2�

where �n= 	�n
x ,�n

z 
 are the Pauli matrices, and a and b states
of the ion n correspond to eigenvectors of operators �n

z , with
eigenvalues 1 and −1, respectively. For Hamiltonian �2�, two
simplest kinds of ordering are possible: ferro-OO �the same
state at each site� and antiferro �AF�-OO �alternating states at
neighboring sites�. In the absence of charge carriers, the
ground state is antiferro-OO if J�0 and ferro-OO if J�0.
Of course, in real materials with JT ions, the orbital Hamil-
tonians are more complicated, but the analysis based on
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model �2� seems to be sufficient to reproduce the essential
physics related to orbital ordering.

Under doping, itinerant charge carriers appear in the sys-
tem, so the density of charge carries n�0. We assume that
the charge carriers are doped into double-degenerate states
and move in the OO background determined by localized
electrons. As we argue below, the main results will be also
applicable to the case where the same electrons, e.g., eg elec-
trons, are responsible both for the OO and for the conduction
due to doping into these eg states. The values of electron
hopping integrals should depend on the states of the neigh-
boring lattice sites. The electron Hamiltonian can be written
as

Hel = − �
�nm�,�,�,�

t���Pn��
† an��

† am��Pm�� + H.c.� , �3�

where an��
† and an�� are creation and annihilation operators,

respectively, for the charge carriers at site n with spin pro-
jection � at orbital �. Having in mind that we are dealing
with a strongly correlated electron system, we introduced in
Eq. �3� projection operators P excluding double occupation
of lattice sites �we consider the case n�1�. Below, analyzing
the electron contribution to the total energy, we shall con-
sider square lattice in the 2D case and cubic lattice in the
three-dimensional �3D� case using the tight-binding approxi-
mation. Assuming that a doped electron moves so that at
each site it occupies the orbital corresponding to the respec-
tive distortion at this site, and that a site corresponding to an
orbital � has nearest neighbors with orbitals � and vice
versa, we can write the spectrum of charge carriers as

E�k� = − t�� z

D�
i=1

D

cos ki = zt��	�k� , �4�

where z is the number of nearest neighbors, D is the space
dimensionality, ki are the components of wave vector k in the
units of inverse lattice constant 1 /d, and 	�k� is normalized
in such a way that 	min=−1.

In our model, doped electrons at a JT distorted site a or b
are in the corresponding orbital state �a� or �b�. We can in-
troduce three hopping integrals: taa, tbb, and tab= tba= t�. For
simplicity, let us assume that taa= tbb= t� t�. Then, we have a
competition of two factors: the formation either of a wider
electron band or of an optimum OO type.

At the site n in the state �, the charge carrier has an orbital
state ��� described by Eq. �1�. The hopping integral between
the sites characterized by orbital states ��1� and ��2� can be
written as

t�1�2 = t cos
�1 − �2

2
+ t� sin

�1 + �2

2
. �5�

Note that the possibility of the interorbital hopping leads to
the difference between Eq. �5� and the expression for the
effective hopping integral in the conventional semiclassical
double exchange model.10

First, we consider a homogeneous state, assuming that the
orbital structure corresponds to the alternation of ��1� and
��2� orbitals �J�0�. In the mean-field approximation, we can
represent the total energy per site as

Etot��1,�2� = zt�1�2
0�n� +
zJ

2
cos��1 − �2�, 
0�n� � 0,

�6�

where the dimensionless kinetic energy 
0�n� is determined
by the type of the crystal lattice. A specific form of 
0�n� for
different cases will be discussed below. We assume in this
section that t, t�, and, therefore, t�1�2 do not depend on the
direction of hopping. In this isotropic case, 
0�n� does not
depend on �1,2 and we can easily calculate the orbital struc-
ture by minimization of total energy �6� with respect to
angles �1 and �2. At relatively large doping, when t�
0�n��
�2J, we have ferro-OO state with �1=�2=� /2. In the op-
posite case, t�
0�n���2J, the minimization yields �2=�−�1,
and

�1 = arcsin� t�
0�n��
2J

�,
t�
0�n��

2J
� 1. �7�

The total energy of such a canted orbitally ordered state is

Etot = zt�
0�n� −
zt2

4J

0

2�n� −
zJ

2
. �8�

Note that if 
0�n�=nf�n�, where f�n� varies slowly with n,
then Etot can have a negative curvature at least at small n,
which is a signature of an instability of a homogeneous or-
bitally ordered state �negative compressibility�.

Let us now determine function 
0�n� and analyze the de-
pendence of the total energy on doping. For the tight-binding
spectrum �4� of electrons in the lattice of the dimension D,
the density of states �0�E� has the form

�0�E� = dk

�2��D�E − 	�k�� = 
0

� ds

�
cos�Es��J0� s

D
��D

,

�9�

where J0 is the Bessel function. Then we have


0�n� = 
−1

��n�

dE E�0�E� , �10�

with the chemical potential � given by equation n
=�−1

� dE�0�E�.
At small doping, n�1, it is possible to write 
0�n� in a

simple explicit form. In 2D case 
0�n��−n+�n2 /2. The to-
tal energy then reads

Etot � − zt�n − z� t2

4J
−

�t�

2
�n2 −

zJ

2
. �11�

From Eq. �11�, we find that d2Etot /dn2�0 if

t

J
�

2�t�

t
. �12�

This implies an instability of the homogeneous orbitally
canted state toward the phase separation into phases with
ferro- and antiferro-orbital ordering. The situation here is
quite similar to that for the usual double exchange �in the
simplest single-band case�,11 which corresponds to t�=0.
Otherwise, when 2�t� / t� t /J, a homogeneous state is stable
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in the whole range of doping—in contrast to the usual double
exchange.

Taking 
0�n��−n in Eq. �7�, we get a rough estimate for
a region of phase separation �assuming that it ends when �1
becomes equal to �2�

0 � n �
2J

t
. �13�

So, the orbitally canted state turns out to be unstable nearly
in the whole range of n where the difference �2−�1=�
−2�1 with �1 from Eq. �7� is nonzero. The situation remains
qualitatively the same, if in Eq. �8� for Etot we take 
0�n�,
calculated using density of states �9�. The behavior of Etot�n�
in 2D case is illustrated in Fig. 1.

In three dimensions, the situation is more complicated. At
small doping, we have 
0�n��−n+an5/3, where

a =
3

5��2

�6
�2/3

,

and the total energy becomes

Etot � − zt�n − z� t2

4J
−

a

n1/3�n2 −
zJ

2
. �14�

The second derivative of Etot is positive at n→0 but it
changes sign at

nc � �5aJt�

9t2 �3

. �15�

Taking into account the same arguments as in 2D case, we
get an estimate for the phase-separation range,

nc � n �
2J

t
. �16�

We see that the presence of nonzero nondiagonal hopping t�
leads to the appearance of a lower critical concentration nc
for phase separation. The Maxwell construction would lead
to phase separation is a somewhat broader doping range,
starting from some n0�nc. Here, the orbital state is de-
scribed by a classical vector but, nevertheless, we have the
lower critical concentration for the canted state and hence for
the phase separation, which in the usual double exchange
model appears only if we take into account the quantum
nature of core spins.11

Note that inequalities �13� and �16� are valid at relatively
small values of J / t ratio.

III. ANISOTROPIC MODEL

Now we study a more realistic model of eg orbitals in the
square 2D lattice. This situation is characteristic, for ex-
ample, for layered cuprates such as K2CuF4 or manganites
�La2MnO4 or La3Mn2O7�. We assume that an orbital ex-
change Hamiltonian has a Heisenberg-type form �2�. Of
course, in real materials �e.g., mentioned above�, the orbital
exchange interaction is more complicated. We believe, how-
ever, that using orbital exchange Hamiltonian in the simple
Heisenberg-type form allows us to catch all essential phys-
ics. Preliminary calculations for the case of superexchange
mechanism of orbital ordering1 show that the obtained re-
sults remain qualitatively the same.

In the case of eg orbitals, any orbital can be written as a
linear combination of two basis functions �a�= �x2−y2� and
�b�= �2z2−x2−y2�: ���=cos�� /2��x2−y2�+sin�� /2��2z2−x2

−y2�. The hopping integrals t�� in Eq. �3� now depend on the
direction of hopping and can be written in the form of a
matrix,

�tx,y��� =
t0

4
� 3 ��3

��3 1
� , �17�

where minus �plus� sign corresponds to x �y� direction of
hopping.

Assuming again an underlying orbital structure corre-
sponding to the alternation of ��1� and ��2� orbitals, we obtain
the spectrum of charge carriers in the form

E�k� = − t0�Ax��1,�2�cos kx + Ay��1,�2�cos ky� , �18�

where

Ax,y��1,�2� = �cos��1 − �2

2
� + cos��1 + �2

2
�

�

3
�� .

�19�

The total energy then reads

Etot��1,�2� = t0�Ax��1,�2� + Ay��1,�2��
�n;�1,�2�

+ 2J cos��1 − �2� , �20�

where 
�n ;�1 ,�2�=�−1
� dE E��n ;�1 ,�2�, and the density of

states can be written as

FIG. 1. �Color online� Two types of behavior of the energy of
homogeneous state �Eq. �8�� in 2D as functions of doping n with a
region of negative curvature �red solid line, J / t=0.05�, and without
it �blue dashed line, J / t=0.35�; t�=0.5t for both curves. For the
values of parameters corresponding to the solid curve, the orbitally
canted state existing on the left-hand side of vertical line is unstable
toward a phase separation. The Maxwell construction in a region of
phase separation is shown by green dot-dashed line. The homoge-
neous state corresponding to the blue dashed curve is stable in the
whole range of doping.
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��n;�1,�2� = 
0

� ds

�
cos�Es�J0� sAx

Ax + Ay
�J0� sAy

Ax + Ay
� .

�21�

Note that the density of states now depends on angles �1 and
�2 via functions Ax,y��1 ,�2�. In order to find the orbital struc-
ture, one should minimize Etot �Eq. �20�� with respect to �1
and �2. The analysis shows that, at doping n less than some
critical value n1 depending on the ratio J / t0, the minimum of
the total energy corresponds to �1=0 and �2=�, that is, we
have the homogeneous antiferro-orbital structure with alter-
nating �x2−y2� and �2z2−x2−y2� orbitals. We ignore here an-
harmonic effects and higher-order interactions, which usually
stabilize locally elongated octahedra with the angles, in our
notation, �=� and �2� /3 �see Refs. 12 and 13�. The energy
of such a state is

Etot = t0
�3
0�n� − 2J . �22�

This state is locally stable, �2Etot /�n2�0.
At n=n1, a jumplike transition to the canted state with

�2=−�1 occurs, where

�1 = arccos� t0�
0�n��
4J

� , �23�

and Etot�n� has a kink at n=n1. The energy of such canted
state at n�n1 is

Etot = t0
0�n� −
t0
2

4J

0

2�n� − 2J . �24�

With the further growth of n, the angle �1 decreases and, at
n=n2, which is determined by the equation t0�
0�n2�� /4J=1,
it vanishes, �1=0 �ferro-OO with �x2−y2� orbitals�. The total
energy of the system as a function of doping is shown in Fig.
2. Note that, depending on the values of parameters, the en-
ergy �24� can have either positive or negative curvature �see
the inset in Fig. 2�. In the former case, the homogeneous
state is locally stable in the whole range of doping, but the
phase separation still exists in the range of n near n=n1 due
to the kink in the system energy. In the second case, PS, of
course, also exists �we have an instability in some range of
doping, where �2Etot /�n2�0�. Note that these two possible
situations �negative curvature of Etot and the kink� can lead
to inhomogeneous states with quite different properties.14

IV. INHOMOGENEITIES IN THE ORBITALLY ORDERED
STRUCTURES

We demonstrated above that the additional charge carriers
introduced to the orbitally ordered structures can lead to the
formation of an inhomogeneous state. Now, let us discuss
possible types of such inhomogeneities in more detail using a
model of the eg orbitals at the sites of 2D square lattice,
considered in Sec. III. We assume that each charge carrier
forms a finite region of an OO structure with alternating ��1�
and ��2� orbitals �not necessarily ferro-OO with �1=�2=0� to
optimize Hel. The remaining part of the crystal has
antiferro-OO structure with �x2−y2� and �2z2−x2−y2� orbit-

als, according to the results in Sec. III at n→0.
The spectrum of charge carriers is given by Eq. �18�. Ex-

panding this spectrum in power series of k up to the second
order, we find an effective Hamiltonian for a charge carrier
in a finite region,

Ĥeff = − t0�Ax + Ay� +
t0

2
�Ax

�2

�x2 + Ay
�2

�y2� , �25�

where Ax and Ay are given by Eq. �19�. Using Hamiltonian
�25�, we can solve the Schrödinger equation within a finite
region, which we choose in the shape of ellipse, with semi-
axes �Ax�0 and �Ay�0. As a result, we find the following
expression for the kinetic energy of a charge carrier within
such droplet:

Ekin = − t0�Ax + Ay� +
t0j0,1

2

2�0
2 , �26�

where j0,1�2.405 is the first root of the Bessel function J0.
The potential energy Epot related to the orbital ordering is the
sum of two contributions proportional to the droplet volume
v �v=��AxAy�0

2�, namely, the energy of the canted OO
within the droplet is �zJ /2� cos��1−�2� and the loss in en-
ergy of the antiferro-OO matrix due to the formation of the
droplet is zJ /2. As a result, we get �z=4�,

FIG. 2. �Color online� The energy of homogeneous state �Eq.
�20�� for the anisotropic model as a function of doping at J / t0

=0.025 �red solid curve�. In the region near n1�0.08, the homoge-
neous state is unstable toward a phase separation. In the inset, the
dependence of Etot�n�+ t0

�3n �linear term of the dependence Etot�n�
in the range n�n1 is subtracted� on doping n is shown at the range
near n1 at different model parameters. The red solid curve �blue
dashed curve� corresponds to J / t0=0.01 �J / t0=0.035� and has a
negative �positive� value of �2Etot /�n2 in the region n�n1 close to
n1. The phase separation exists for both situations. Maxwell con-
struction is shown by dot-dashed line.
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Epot = 4��0
2J�AxAy cos2��1 − �2

2
� . �27�

Minimizing the droplet energy Ekin+Epot with respect to �0,
we find

�0 = � t0j0,1
2

8�J�AxAy cos2� �1−�2

2 ��1/4

. �28�

The total energy �per lattice site� then reads

Etot = − 2J + E��1,�2�n , �29�

E��1,�2� = − 2t0�Ax + Ay�

+ j0,1�8�t0J�AxAy�1/2�cos��1 − �2

2
�� , �30�

where we assume that all charge carriers introduced by dop-
ing form such identical OO droplets.

To find possible types of OO droplets, we minimize E
with respect to �1 and �2 �note again, that functions Ax,y
depend on �1 and �2 according to Eq. �19��. The function
E��1 ,�2� at two different values of J / t0 is shown in Fig. 3. In
general case, the function E��1 ,�2� has several minima, and
the values of �1 and �2 corresponding to the lowest minimum
depend drastically on parameter J / t0. At small J / t0 �Fig.
3�a��, the lowest minimum corresponds to �1=�2=0, that is,
we have ferro-OO structure inside the droplet with occupied
�x2−y2� orbitals. In this case, the most favorable shape of
droplets is a circle �see Fig. 4�a��. At J / t0 larger than some
critical value �Jcr / t0�0.0075�, the minimum �1=�2=0 be-
comes metastable and the energy E��1 ,�2� has four degener-
ate lowest minima: two of them correspond to �1=� /3, �2
=2� /3 or �1=−� /3, �2=−2� /3, and the similar two minima
with the replacement �1↔�2 �see Fig. 3�b��. In this case, we
have chains of alternating �x2−z2� and �2x2−y2−z2� �or
�y2−z2� and �2y2−x2−z2�� orbitals and, hence, nearly one-
dimensional �cigar-shaped� droplets stretched along x or y
axes �Fig. 4�b��. With the further growth of J / t0, the meta-
stable state �1=�2=0 splits into two states corresponding to
�1

�=−�2
� with positive and negative �1

�, as can be seen from
Fig. 3�b�. These local minima are, however, higher in energy
than those corresponding to cigarlike droplets.

The existence of two types of droplets with different
shapes can be easily understood. The maximum gain in the
kinetic energy corresponds to the ferro-OO state with �x2

−y2� orbitals. At small J / t0, the kinetic energy prevails and
we have circular droplets with this type of orbitals. The mini-
mum cost in the potential energy corresponds to nearly one-
dimensional structures. At larger J / t0, the potential energy
plays more important role than the kinetic one and we get
cigarlike droplets �smaller volume of such a droplet gives
smaller loss of orbital energy�. The orbital structure inside
the droplet described above corresponds to the maximum
gain in the energy for one-dimensional chain �in the absence
of hopping between neighboring chains�.

The analysis shows that the energy of an inhomogeneous
state �Eq. �29�� consisting of circular or cigarlike OO drop-
lets embedded into an antiferro-OO matrix is less than the

energy of a homogeneous state in a certain range of doping
0�n�nc

�. With the growth of the number of charge carriers,
the droplets start to overlap and, at n=nc

�, the inhomogeneous
state of considered type �ferro-OO droplets in antiferro-OO
matrix� disappears. However, the phase separation exists in a
wider range of doping �see Sec. III�. For circular droplets, we
have an estimate nc

��1 /��0
2. Taking for estimate the ratio

J / t0=0.005, we get �0�2 �in units of lattice constant� and
nc

��0.08.
In the case of cigarlike droplets, we have Ax=0 �or Ay

=0� and according to Eq. �28� we would get that chains have
infinite length �but zero volume v� �0=�. This is, of course,
not a very realistic result coming from an approximation,
where the potential is assumed to be proportional to the
droplet volume only. In order to estimate the characteristic

(a)

(b)

FIG. 3. �Color online� Energy �Eq. �30�� in units of t0 as a
function of angles �1 and �2 for �a� small ��0.0075� and �b� large
values of J / t0 �see the text�.
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length L of the chain, we should take into account the surface
term �proportional to the droplet’s length� in the potential
energy Epot of the droplet. Let us consider, for definiteness,
the chain of �x2−z2� and �2x2−y2−z2� orbitals stretched along
x axis. In this case, we have Ax=�3 and Ay =0. The effective
Hamiltonian �25� is reduced to

Ĥeff = − t0
�3 +

t0
�3

2

�2

�x2 ,

and the kinetic energy of the charge carrier in the chain of
length L becomes Ekin=−t0

�3�1−�2 /2L2�. The surface en-
ergy of interorbital exchange interaction has a minimum,
when the chain is located in an antiferro-OO matrix like
what is shown in Fig. 4; each �x2−z2� ��2x2−y2−z2�� orbital
in the chain has its nearest-neighbor �x2−y2� ��2z2−x2−y2��
orbital in the matrix. In continuum approximation, the poten-
tial energy can be written as Epot=9JL /4. Minimizing Ekin
+Epot with respect to L, we arrive at the following formula
for the characteristic length of the chain:

L0 = �4�2t0
�3

9J
�1/3

. �31�

At J / t0=0.05�Jcr / t0, we have L0�5.5. At random distribu-
tion of the chains in the matrix �we have chains stretched
both along x and y axes�, the critical concentration is about
nc

��1 /L0
2, but it can be larger if a more complicated structure

of chains, e.g., regular stripes, appears in the system.
Similar to the situation with spin polarons, where the

presence of the gapless �Goldstone� excitations leads to
slowly decaying spin deformations around magnetic defect
�polaron�,10 we expect that the long-range strain fields will
be created around orbital polarons. But, again similar to the
spin case, this factor does not destroy the very self-trapped

polaron state but only would modify its parameters and also
would lead to a long-range interaction between different po-
larons.

In this section and in Sec. III, we studied a two-
dimensional case of the anisotropic model. In contrast to the
isotropic model considered in Sec. II, the space dimension-
ality can change significantly the obtained results. Indeed,
the hopping amplitudes of eg electrons in z direction �perpen-
dicular to the xy plane considered here� are quite different
from that in xy plane. This can affect both the orbital order in
the homogeneous state and the shape and the orbital structure
of inhomogeneities. So, the detailed analysis of the 3D case
is a special and rather complicated task.

V. CONCLUSIONS

We have studied a simple model of electronic phase sepa-
ration in the system of charge carriers moving in an orbitally
ordered background. It was shown that a homogeneous state
in such a system can be unstable toward a phase separation,
where delocalized charge carriers favor the formation of
nanoscale inhomogeneities with the orbital structure different
from that in the undoped material. The shapes and sizes of
such inhomogeneities were determined for 2D lattice of eg
orbitals. The shape of inhomogeneities depends drastically
on the ratio of interorbital exchange interaction and a hop-
ping amplitude of the charge carriers, J / t0; there exists a
critical value of J / t0 corresponding to the transition from the
circular inhomogeneities to one-dimensional chains of finite
length.

The model under study is quite similar to the double ex-
change model, where the orbital variables play a role of local
spins. It is well known that such a model also exhibits an
instability toward a phase separation into phases with differ-
ent types of magnetic ordering. The inhomogeneous state
with circular ferro-OO droplets is, in essence, an analog of a
magnetic polaron state �ferromagnetic droplets in an antifer-
romagnetic matrix�, which is usually considered in the
double exchange model.4,5,11 Nevertheless, our orbital model
is more complicated than the usual double exchange due to
the existence of nondiagonal hopping amplitudes and to the
anisotropy in hoppings. Both these features lead to the re-
sults specific for the orbital model, such as the kink in the
energy of a homogeneous state and the canted-OO needlelike
droplets. Note that the difference between spins and orbitals
can have many consequences, see, e.g., Refs. 15 and 16.

Of course, in real systems with magnetic ordering, there
exists the well-known conventional mechanism of formation
of magnetic polarons �in simple cases—ferromagnetic mi-
croregions in an AF matrix, which decreases kinetic energy
of conduction electrons�. But even in this case, if there is an
orbital degeneracy and if orbital ordering is present, one has
to worry about orbital structure and its interplay with the
motion of carriers �electrons or holes�. It could be that the
magnetic ordering �parallel spins� does not prevent electron
motion; but if it occurs on the background of antiferro-orbital
ordering �e.g., alternating �2x2−y2−z2� and �2y2−z2−x2� or-
bitals in the basal plane of manganites, which coexists with
the ferromagetic spin ordering in this plane�, this AF-orbital

(a)

(b)

FIG. 4. �Color online� Schematic illustration of �a� circular and
�b� needlelike droplets. An electron or hole moves in a finite region
creating a ferro- or canted-OO structure in antiferro-OO matrix. In
the case of hole, there exists a one mobile empty site within a
droplet.
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ordering itself will hinder electron motion—as we show—
and then one has to create an orbital polaron even for the
ferromagnetic spin ordering. Thus, even in the ferromagnetic
state �equivalent to the spinless fermions we consider�, there
will still be the tendency to form orbital polarons. In prin-
ciple, this is in agreement with the Monte Carlo simulations
for the two-orbital model in Ref. 17, which demonstrate the
possibility of phase separation in the ferromagnetic state. In
the present paper, any magnetic structure and spins of the
charge carriers were fully neglected. If we take into account
spin degrees of freedom, it can lead to the picture with inho-
mogeneities with different orbital and spin configurations.

In the proposed model, the localized electrons forming an
orbital order and the conduction electrons or holes were sup-
posed to be two different groups of electrons. However, we
can argue that our main results are also valid for a model,
where the same electrons take part both in the hopping and in
the formation of orbitally ordered structure. Indeed, in the
case of magnetic oxides with Jahn-Teller ions, an orbital de-
generacy is lifted by lattice distortions, giving rise to an or-
bitally ordered ground state at n=1. If we suppose that a
long-range orbital ordering still exists at small hole doping
x=1−n�1, we come to the situation considered in this pa-
per: we have holes moving in an orbitally ordered back-
ground. In a mean-field approximation, we should only re-
place in all formulas above n→x=1−n and J→J�1−x�2,
since the number of sites taking part in interorbital exchange
interaction is reduced by a factor of 1−x. In the materials
with JT ions, the orbital Hamiltonians are more complicated
than the Heisenberg-type Hamiltonian considered in this pa-
per. Preliminary calculations for the Hamiltonian corre-
sponding to the superexchange mechanism of orbital
ordering1 show that the obtained results remain qualitatively
the same.

In real substances at high doping level there may also
appear an orbitally disordered state or orbital liquid, as was

proposed, e.g., for manganites, in Ref. 18; although this
question is still rather controversial and other possibilities
were also proposed �complex orbitals19�. As we know on the
better studied spin systems, disordered state is still better
from the point of view of kinetic energy than the AF one �or
here antiferro-orbitally ordered�. But the detailed treatment
of the spin case, see e.g. Refs. 3–5, has shown that in a
disordered �i.e., paramagnetic� state one can gain extra en-
ergy by forming ferromagnetic polaron �“ferron”� even in the
paramagnetic matrix. We expect similar situation also in our
case, although this question deserves further study. To do it
correctly, one has to go into all the complications and intri-
cacies of considering electron motion in a disordered media,
and this in the case of a disorder, which itself is not fixed, but
can adjust to the electron. This is definitely a very interesting
and rewarding but quite difficult separate problem. The les-
sons we have from the spin case—that polaron states are
quite robust and can exist even in the disordered
background—show that our general results would still be
valid, so that the orbitally disordered states can compete with
our polarons only for rather high doping. However, even in
the absence of orbital ordering, the redistribution of charge
carriers between different orbital states can lead to some un-
usual effects. The work in this direction is in progress.
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